
Carnot cycles and a non-equilibrium absolute temperature

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5371

(http://iopscience.iop.org/0305-4470/20/15/048)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 5371-5378. Printed in the U K  

Carnot cycles and a non-equilibrium absolute temperature 

D Jou and J Casas-Vazquez 
Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalonia, 
Spain 

Received 16 February 1987 

Abstract. Starting from a Carnot cycle with entropy production in the heat reservoirs, we 
suggest a physical interpretation of a non-equilibrium absolute temperature. 

1. Introduction 

Some years ago, we proposed a non-equilibrium absolute temperature based on a 
generalised entropy (Casas-Vizquez and Jou 1981). Although we could calculate the 
non-equilibrium corrections with respect to the local-equilibrium absolute temperature, 
we were not able to provide a physical interpretation for them. The aim of the present 
paper is to propose such an interpretation, still limited but sufficiently illustrative, 
based on Carnot cycles. Historically, Carnot cycles were the basis for the first proposal 
of an absolute temperature scale (Thomson 1848) so they may again be a good 
conceptual tool to gain some insight into the meaning of the new terms appearing in 
the non-equilibrium absolute temperature. 

In fact, the existence and the meaning of a non-equilibrium entropy and of a 
non-equilibrium absolute temperature are amongst the most basic and fundamental 
open questions in thermodynamics. To deal with them in all generality would be very 
difficult so recourse to simple model systems, as in this paper, is justified. Furthermore, 
this leads to concrete and  specific answers whose physical immediateness renders them 
especially suggestive and  pedagogical. 

In Q 2 we review the main ideas leading to a physical interpretation of the non- 
equilibrium entropy used in this paper, and in $ 3  we propose a Carnot cycle with 
dissipation, leading to an interpretation of the corresponding non-equilibrium absolute 
temperature. In Q 4, we compare our results with those of kinetic theory, in order to 
have a microscopic model for the non-equilibrium temperature. 

2. Interpretation of non-equilibrium entropy 

Our proposition for a non-equilibrium absolute temperature (Casas-Vazquez and Jou 
1981) was based on the generalised entropy used in extended irreversible thermody- 
namics (Lebon et a1 1980, Casas-Vbzquez et a1 1984, Muller 1985). Such entropy has 
as variables not only the local-equilibrium ones, i.e. the internal energy and the density, 
but also the dissipative fluxes present in the system. We will limit ourselves to the 
case of heat conduction. The generalised Gibbs equation is then (Casas-Vazquez and 
Jou 1981, Jou and Careta 19821, for a simple fluid or an isotropic solid, 

(1) d s =  T - '  d u +  T - ' p  d v - ( 7 U / h T 2 ) q * d 9  
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with s, U and U being the entropy, internal energy and specific volume per unit mass 
(the reciprocal of the mass density) respectively, T and p are absolute temperature 
and thermodynamic pressure, q is the heat flux and A and 7 are the heat conductivity 
and relaxation time of the heat flux, defined according to the Maxwell-Cattaneo 
equation 

7 6 q / S t + q = - A V T .  (2) 

The justification for including the heat flux as an independent variable is precisely 
equation ( 2 ) ,  for whose solution one must specify initial conditions for q, independently 
of those for CT. This equation, which generalises the classical Fourier law for heat 
conduction, may be justified from kinetic theory. It is useful for the description of 
second sound in solids at low temperatures and it avoids the paradox of infinite velocity 
of propagation of thermal signals from classical theory. Equation (2) should be used 
instead of Fourier’s law when the frequency of the phenomena studied becomes of 
the order of the inverse of r, as is the case in ultrasonic propagation in moderately 
rarefied gases and in neutron scattering experiments in liquids. For all these reasons, 
the consideration of the relaxation terms in ( 1 )  and (2) is not merely academic, but 
has a definite meaning. It provides the physical basis for our model of non-equilibrium 
thermodynamics. 

The integrability condition of ( l ) ,  namely the equality of the second-order mixed 
derivatives of s, leads for the absolute temperature to (Nettleton 1960, Casas-Vizquez 
and Jou 1981) 

with Ti:( U, U )  being the usual local-equilibrium absolute temperature and the derivative 
in (3) being carried out at constant v and q. 

We will propose firstly an interpretation of the generalised entropy ( l ) ,  which is 
the basis for the subsequent derivation of (3).  With this aim in mind, assume a system 
in a steady non-equilibrium state with heat flux qO. Take a very small part of it, so 
small that its temperature may be considered as uniform. The local equilibrium 
assumption would postulate from the start that the entropy of this small element is 
just the equilibrium entropy corresponding to its values of U and U. We d o  not make 
this hypothesis. Instead, we try an operational definition for the entropy to be assigned 
to this small system. We suddenly isolate the system, which is traversed by the heat 
flux qo,  and then let it attain equilibrium, i.e. let the heat flux q decay to its final 
equilibrium value q = 0.  

The final entropy will be, of course, the equilibrium entropy corresponding to U 
and U. The initial (non-equilibrium) entropy will be related to that final entropy by 
means of 

where U is the entropy production per unit volume and unit time. Since we have 
isolated the system there is no flow of entropy nor energy across the boundaries during 
the decay towards equilibrium. 

The entropy production in the case of heat conduction may be written as ( D e  Groot 
and Mazur 1962) U = q 2 / A T 2 .  We will assume that AT2 remains constant during the 
decay (here, we are neglecting the terms of order q2  in T, because U itself is of second 
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order in 4 ) .  We assume furthermore, according to equation (21, that the decay of q 
is exponential, i.e. q (  t )  = q(, exp( - r / T ) .  

Integration of (4) then leads to 

with 2” the volume of the element considered. This argument shows the physical origin 
of the non-classical terms in entropy (1).  

In  order to obtain an estimate of how small the subsystem must be in order for q 
to have an exponential decay, we introduce equation ( 2 )  into the energy conservation 
equation 

pcGT/St = -div q ( 6 )  

with c the specific heat. This gives the classical ‘telegrapher’s equation’ with two 
timescales defined by T and T L  = pcL’/A, with L the dimensions of the subsystem. For 
q to decay exponentially it is required that TL<< T. This is achieved when L’<< A T / ~ c .  

One could also consider, as a speculative idealisation, the extreme case of a large 
system at uniform temperature through which heat is circulating. This would be the 
case of a system with very high heat conductivity because in this case the condition 
L’<< T A / ~ c  would be satisfied by the system as a whole. An example could be a crystal 
with purely harmonic interactions amongst neighbouring molecules, which would 
behave as a ‘heat superconductor’. Though surprising, this may be the case of the 
heat reservoirs used in the classical reversible Carnot cycle, which are able to provide 
heat to a system at its same temperature. In  this case, if the heat flux was uniform 
through the system, the volume integral would become simply the product of the 
integrand times the total volume of the system. I n  the general and more realistic case 
of non-uniform distribution of temperatures, the entropy of the system would be 
obtained by integration over all the small elementary volumes which compose it. 

In order to deal with large systems in a more general way we suppose, exactly as 
in the classical theory of non-equilibrium thermodynamics and in kinetic theory, that 
they may subdivide in many small subsystems, each of them with an entropy given by 
(5) .  Thus, we define the entropy of the total system as the sum of the entropies of the 
subsystems. When writing the generalised Gibbs equation (1)  per unit mass, the 
coefficient ( T / A T ’ )  must be understood as the mean value of this quantity over the 
specific volume L’ in the region considered. 

3. Carnot cycle with dissipation and non-equilibrium absolute temperature 

We will now apply a related argument to obtain an insight into the heat-dependent 
terms appearing in the absolute temperature (3). With this aim we consider a system 
undergoing an  infinitesimal Carnot cycle between a furnace and a refrigerator at 
respective (local-equilibrium) absolute temperatures T I  and T z .  We consider that the 
heat d Q ,  > 0 gained from the first one and the heat -dQ2 (< 0) given to the second 
one are exchanged during the decay of initial heat fluxes q l ( 0 )  and q 2 ( 0 )  through the 
respective thermal reservoirs. Then, d Q ,  and dQ2 are given by 
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This is so because q is just the heat per unit area and unit time. A ,  and A2 are the 
mean areas of contact of the system with the reservoirs at Ti and T,, respectively, and  
the heat fluxes q,( t )  decay exponentially according to the Maxwell-Cattaneo law. 

The entropy balance during a cycle must now take into account the irreversibilities 
of the cycle, as in finite-time thermodynamics (Curzon and Ahlborn 1975, Andresen 
et a1 1977a, b). Whereas the reversible Carnot cycle may be formulated in a very 
general form, this is not the case when some dissipative process is taking place. In 
the latter case, one must construct a model incorporating those irreversibilities actively 
involved during the cycle, because the explicit and detailed consideration of all the 
irreversibilities would be disproportionately time-consuming and complicated in rela- 
tion to the new results one wished to obtain. I n  our case, the model for the entropy 
production due to the irreversibility of the decay of the fluxes has already been 
formulated and evaluated in (4) and (5). 

We have, for the entropy balance during a cycle, 

-dQ, /  TI +dQz/ T,=i( V , T , / A ,  T : ) q f + i (  V272/hzT’)q:z 0 (8) 

with V,  and A ,  the respective volumes and heat conductivities of the heat reservoirs. 
We assume that the machine is endoreversible (Andresen et a1 1977a, b), i.e. that all 
the irreversibilities take place in the reservoirs and not in the system at work. This 
amounts to assuming that the relaxation time of the system is much less than those of 
the reservoirs. Here we suppose that the relaxation process takes place in the whole 
volume V of the reservoirs. This is not a fundamental hypothesis. V could also be 
considered as the volume of the region of the reservoirs where the relaxation takes 
place, as for instance the region of contact between them and the system. Note, finally, 
that in the limit of infinite heat conductivity the dissipative terms in (8) formally vanish 
and we recover the well known result for the reversible Carnot cycle. 

-dQi[(1/ T i )  + (l/dQi);( V I ~ i / A i T f ) q f l  

Expression (8) may be written in the form 

+ dQ2[ ( I /  T ) ?  - ;( l /dQ,)( V,T,/A, T i )q t]  = 0. (9) 

I f  the equilibrium absolute temperature of the reservoirs is changed by the expressions 
within square brackets, which we will call ( l / T I )  and ( l /Ti) ,  the efficiency of this 
dissipative Carnot cycle will be given by the classical expression for the Carnot efficiency 
7 = ( T I  - T z ) /  T I  but with the T, replaced by the T: .  

Now, we want to compare the ‘temperatures’ T’ suggested by (9) with those 
appearing in ( 3 ) ,  obtained by derivation of s with respect to U. We have 

But d Q ,  and dQ, may be written in terms of the variations of the internal energy of 
the reservoirs as d Q ,  =- - (AU,)  and dQ2=(ACJz). In the limit of small AU, the 
‘temperatures’ defined in ( I O )  reduce to our absolute temperatures as defined by ( 3 ) .  
This is because the terms in  q2  may also be written as increments, compared with the 
vanishing entropy production of the classical case. In  this way, they could be written 
as ;(~/AU)[A(VT/AT’)], and  their limit for small heat pulses (AU going to zero) 
would be the derivative appearing in (3). This may also be seen from another point 
of view; if, according to the specification of (3), we assume that q,(O) and q2(0) are 
fixed and that the geometry ( V, A )  is also fixed, then we could change-conceptually, 
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though not in a strictly actual physical sense-dQ, and dQ2  by modifying T~ and T ~ .  

This is also the only way to modify the corresponding entropy productions, since the 
conductivities and temperatures have been taken as fixed-this hypothesis is consistent 
with that made in going from (4) to ( 5 )  and could be slightly relaxed both there and  
here. As a consequence, the expressions (10) may be written as 

because both the numerators and denominators are linear in the T. 

Expressions (11) are identical to (3), so that we have a physical interpretation of 
the non-equilibrium absolute temperature in (3) in terms of the efficiency of Carnot 
cycles, in a close parallel with the identification of the usual absolute temperature. 

Note, incidentally, that, as was to be expected, the efficiency of this Carnot cycle 
with dissipation is less than the ideal reversible one. The efficiency is 

(12)  7 = d  W / d Q =  1 - (  T i / T { ) C  1 - ( T J T , )  

and the inequality is due to the fact that, according to (9 ) ,  TI G T,  whereas TI, 3 T2 
(note that both dQ,  and dQ2  are positive). 

4. Comparison with kinetic theory 

An investigation of the meaning of both temperatures-the local-equilibrium one and 
the generalised one-at a more microscopic level may also be helpful in understanding 
the role of both temperatures. We will concentrate our attention to the simplest case, 
namely a moderately dilute gas in such conditions that its evolution may be described 
by means of the Boltzmann equation. 

In kinetic theory, the absolute temperature appearing in the velocity distribution 
function through the mean value of the energy of the particles, is given by 

ikTn = tmc'f dv l 
m being the mass of a molecule, c its relative velocity with respect to the mean velocity 
U, and k the Boltzmann constant. 

Out of equilibrium, but near to it, the velocity distribution function is usually 
developed in the form 

f=f3&1+41) (14) 

wheref,, the Maxwell-Boltzmann equilibrium (or  local-equilibrium) distribution func- 
tion and 4, a function of the deviation from equilibrium ( V T  in the Chapman-Enskog 
method and q in the Grad method) we assumed small with respect to unity. In order 
to determine the five parameters appearing in fi i.e. n (particle number density), U 
(mean velocity) and T (temperature), one imposes the condition 

r r 

n = J  f d u  nmu = J mvfdu $kTn = imc'f du  (15) J 
where U is the molecular velocity. 
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These relations lead to the following conditions on f :  

so that fe,+, does not contribute to the first five moments of the (non-equilibrium) 
velocity distribution function. In  such a way, only the classical local-equilibrium 
absolute temperature usually appears in kinetic theory, as defined by (13), and there 
is no contribution to i t  from the non-equilibrium part. 

The question now is: from where may another ‘absolute temperature’ appear in 
kinetic theory? One finds the answer when considering the entropy, which is defined 
as 

Introducing (14) into ( 1 7 )  and developing it up to second order in 4, ,  one obtains 
(De  Groot and Mazur 1962) 

p s = p s , , - j k  f e q 4 f d 0 .  5 
Here, ps,, is the local-equilibrium entropy defined as 

PSeq  = - k  f,, I n f e ,  do. I 
The derivative of the entropy (18) with respect to the internal energy [at constant 

volume) also gives rise to an ‘absolute temperature’, which is different from the local 
equilibrium one obtained by differentiation of ps with respect to U. Whereas in the 
local-equilibrium theory both absolute temperatures (that defined from the mean value 
of the energy and that defined as the derivative of the entropy) coincide, this is no 
longer the case when the local-equilibrium assumption is abandoned. 

In  order to obtain a more explicit view of that which we have commented on, we 
may go to the expressions obtained in Grad’s method (Grad 1958). In the case when 
the system is submitted to a heat flux q, the 4 ,  is given by 

4, = ~ ( m / p k 2 T ’ ) [ ~ m c ’ - ~ k T ] c .  q (20) 

ps = pseq - ( m / 5 p k T 2 ) q  * q. 

where p is the pressure, and one obtains for the entropy (18) 

(21) 

Furthermore, by introducing (14) and (20) into the linearised Boltzmann equation, 
one finds for the evolution of the heat flux (amongst other terms which are of no 
interest here) 

d q l d t  = - (2pP/3)q- (Spk/2m)VT+other  terms (22) 

where /? is a parameter related to an integral of the collision term. 
The latter equation, when compared to the Maxwell-Cattaneo one ( 2 ) ,  allows us 

to identify ~ = ; ( l / p P )  and A = $ ( p k / m ) ~ .  When this relation between A and T is taken 
into account, one sees that the entropy (21) is just a particular case of our macroscopic 
entropy defined by ( 1 )  or (5)-here we are working at  unit volume-because 7 /2hT2  = 
m / (5pk  T’).  
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As a conclusion, the 'absolute temperature' obtained by differentiating the entropy 
of kinetic theory with respect to internal energy-at constant volume-is just a particular 
case of our macroscopic definition (3). However, in contrast to the local-equilibrium 
absolute temperature, its meaning is not physically evident. We hope this paper is 
able to provide some understanding of it.  

Note, finally, in relation to our  argument of $ 2 ,  that when the gas is suddenly 
isolated the velocity distribution function is not the local-equilibrium one, but still has 
a non-equilibrium part, feq&, , which will decay to zero in a short time of order 7. 

Perhaps this microscopic point of view may be of some help in understanding the 
meaning of the relaxation to the equilibrium we have mentioned in $ 5  2 and 3. 

5. Concluding remarks 

Some of the assumptions made here, though seemingly artificial (such as a heat reservoir 
at uniform temperature which gives or takes heat from a system at the same temperature) 
are also shared by the classical Carnot cycle. Other assumptions, such as the endorevers- 
ible character of the cycle (entropy production only takes place in the reservoirs but 
not in the system), are shared by most finite-time thermodynamic developments. On 
the other side, the interpretation of the non-equilibrium temperature as proposed here 
depends on a very peculiar and specific process. This is rather inescapable because 
when dealing with dissipative processes one must propose some definite mechanism 
of entropy production in order to be able to obtain explicit results. The mechanism 
chosen here has been the relaxation of the heat fluxes. This is of course consistent 
with the whole formalism of extended thermodynamics which up  to now has focused 
its attention on an exponential relaxation of the fluxes. 

The procedure presented in this paper somewhat clarifies the problem of the 
measurement of generalised temperature. This could not be achieved with a fast and 
small thermometer, which would give the local-equilibrium temperature (i.e. that related 
to the mutual equilibrium of the system and the thermometer), but with a complex 
combination of that thermometer with some kind of heat fluxmeter, such as a bolometer. 
Here we provide a very theoretical but physically definite method to obtain T, namely 
through the efficiency of an infinitesimal Carnot cycle run by short thermal pulses. 
Therefore, there is some parallel with the theoretical method proposed by Lord Kelvin 
(Thomson 1848) for the 'measurement' or, at least, for the theoretical justification of 
the absolute character of the scale defined by the air thermometer at constant pressure. 

It is worth mentioning that in situations when the viscous pressure tensor pl' must 
be taken into account, the continuity of the heat flux across a thermometric wall does 
not guarantee the continuity of the absolute temperature. The jump in 1/ T appears 
related to the jump in P' as (Muller 1985) 

[1/ T ] q *  n - [ P l ' ]  q '  n = 0 

with n the normal to the wall. Here we d o  not have this problem, since we have 
assumed vanishing P". In more general situations, the continuity is required not only 
of q but also of P' across the thermometric wall in order to be sure of the continuity 
of T. 

In summary, we think that, in spite of its limitations, the interpretation proposed 
here is sufficiently enlightening with respect to the physical meaning of the non- 
equilibrium absolute temperature previously proposed in extended thermodynamics. 



5378 D Jou and J Casas-Va'zquez 

Furthermore, it suggests a connection between two new kinds of thermodynamic 
developments (extended thermodynamics and  finite-time thermodynamics) which were 
previously considered to be uncorrelated. 
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